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It is all about convergence
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Source Materials

[EUROGRAPHICS 2016]

[SIGGRAPH 2014]

- Main paper for this presentation

- Baseline technology
- Useful presentation slides from the authors



Importance Sampling



Rendering Equation

- Direct analytic integration is virtually impossible

- Recursive, due to the radiance term in the integrand



Monte Carlo Ray Tracing

- Random sample direction from hemisphere to 
cast ray recursively

- Unbiased, even if sampling is not uniform



Importance Sampling

- Lower variance when PDF is close to integrand distribution

- i.e. make more path that contributes more to radiance (light transport guiding)

- How can we make a good estimate for the integrand distribution?

- BRDF (given)

- Illumination (unknown)

∝
Better to be...



Light Transport Guiding Techniques
(slides from Vorba et al.)
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Limitations of previous work
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• Bad approximation of             in complex scenes
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Limitations of previous work
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        Not enough memory!



Solution: On-line Learning of Parametric Model
- Shoot a batch of photons, then summarize into a parametric model

- GMM (Gaussian Mixture Model) is used

- Parametric model use less memory

- Forget previous photon batch and shoot new batch

- Keep updating parameters of the model: On-line learning



Overcoming the memory constraint
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Overcoming the memory constraint
1st pass 2nd pass

GMM

38



Overcoming the memory constraint
1st pass

GMM

2nd pass

39



Overcoming the memory constraint
1st pass 2nd pass 3rd pass …

40

GMM
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Gaussian Mixture Model



Gaussian Distribution (Normal Distribution)

Compact:
just 6 float 
numbers for 2D



Gaussian Mixture Model (GMM)

Used to approximate PDF

Convex combination of Gaussians:



Expectation Maximization (EM) Algorithm
- Popular algorithm that can be used for fitting GMM to scattered data points
- Consists of 2 steps: E-step (expectation) and M-step (maximization)
- Converge to local maximum of likelihood



EM: How It Works



EM: Expectation Step

Soft assignment using Bayes’ rule

- For each sample, compute 
soft assignment weight to 
clusters



EM: Maximization Step

- Update each cluster 
parameters (mean, variance, 
weight) to fit the data 
assigned to it
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On-line learning: Weighted Stepwise EM

- Use one sample for each step and extend to infinite stream of samples

- Use weighted samples (can be viewed as repeated samples)

- Fit to density of finite set of samples, compute sufficient statistics at once

Weighted stepwise EM: (variant used for this paper)

Original EM:
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1. Preprocessing
- BRDF is approximated by GMM

- Cache GMM for each material, for each 

(viewing) direction

BRDF:Given



2. Training
- Photon, importons guide each other in 

alternating fashion

- On-line learning with weighted step-wise EM

- Cache the learnt illumination GMMs

Illumination: not known in advance



2. Training



3. Rendering
- For intersection point, query the cached 

BRDF, radiance GMM

- Product distribution is calculated 

on-the-fly

- Sampling based on product distribution

How can we calculate efficiently?



Gaussian x Gaussian = Gaussian

- Extends to multi-dimensional Gaussian

X =



(        + … +       ) x (         + … +       )

GMM x GMM = GMM

BRDF: GMM of N components Illumination: GMM of M components

= (           +        + … +        +        )
Product distribution: GMM of M*N components

- Parameters for product GMM can be computed directly from 
original parameters



Reduction of GMM components

- For the sake of efficiency, merge similar components



Results & Discussion



Evaluation: 1 hour rendering



Result
Multiple importance sampling 
instead of product dist. No GMM reduction



Result



Discussion
- No memory issue indeed

- < 10MB for GMM cache in typical scene

- Fast convergence for complex glossy-glossy reflection scene
- Where product sampling is important

- Not efficient for spatially varying BRDF
- GMM is cached per material

- Possible extension using SVBRDF parameters



Summary
- In order to perform importance sampling, we estimate illumination based on particles

- In complex scenes, we need more particles for better estimation

- On-line learning of GMM by weighted stepwise EM, enables to generate particles 

without causing memory issues.

- BRDF is also approximated as GMM so that we can use the product GMM as direct 

approximation for the integrand of the rendering equation

- Fast convergence for complex, glossy scenes


