Product Importance Sampling for Light Transport Guiding

Herholtz et al. 2016

presenter: Eunhyouk Shin

It is all about convergence

Contents

- Review on importance sampling
- Light transport guiding techniques
- Gaussian Mixture Model & EM
- Process overview
- Results & Discussion

Source Materials

Product Importance Sampling for Light Transport Path Guiding

Sebastian Herholz¹ Oskar Elek² Jiří Vorba^{2,3} Hendrik Lensch¹ Jaroslav Křivánek²

¹Tübingen University 2 Charles University Prague 3 Weta Digital

- Main paper for this presentation

On-line Learning of Parametric Mixture Models for Light Transport Simulation

Jiří Vorba^{1*} Ondřei Karlík^{1*} Martin \tilde{S} ik^{1*} Tobias Ritschel^{2†} Jaroslav Křivánek^{1‡} ¹Charles University in Prague ²MPI Informatik, Saarbrücken

[SIGGRAPH 2014]

- Baseline technology
- Useful presentation slides from the authors

Importance Sampling

Rendering Equation

$$
L(\mathbf{x}, \omega_o) = L_E(\mathbf{x}, \omega_o) + L_R(\mathbf{x}, \omega_o)
$$

$$
L_R = \int_{\Omega} \rho(\mathbf{x}, \omega_o, \omega_i) \cdot L(\mathbf{x}, \omega_i) \cdot \cos \theta \, d\omega_i
$$

- Direct analytic integration is virtually impossible
- Recursive, due to the radiance term in the integrand

Monte Carlo Ray Tracing

$$
\widehat{L}_{\mathbf{R}} = \frac{\rho(\mathbf{x}, \omega_{o}, \omega_{i}) \cdot L(\mathbf{x}, \omega_{i}) \cdot \cos \theta}{p(\omega_{i})}
$$

- Random sample direction from hemisphere to cast ray recursively
- Unbiased, even if sampling is not uniform

Importance Sampling

$$
p(\boldsymbol{\omega}_i) \stackrel{\text{Better to be...}}{\text{oc}} p(\mathbf{x}, \boldsymbol{\omega}_o, \boldsymbol{\omega}_i) \cdot \boxed{L(\mathbf{x}, \boldsymbol{\omega}_i)} \cdot \cos \theta
$$

- Lower variance when PDF is close to integrand distribution
- i.e. make more path that contributes more to radiance (light transport guiding)
- How can we make a good estimate for the integrand distribution?
	- BRDF (given)
	- **- Illumination (unknown)**

Light Transport Guiding Techniques

(slides from Vorba et al.)

• Jensen *[1995]*

photon tracing

• Jensen *[1995]*: reconstruction

• Jensen *[1995]*: reconstruction

• Peter and Pietrek *[1998]*

• Peter and Pietrek *[1998]*

• Peter and Pietrek [1998] PT

• Peter and Pietrek [1998] \Rightarrow \rightarrow \rightarrow PT

• Peter and Pietrek [1998] \Rightarrow \Rightarrow \Rightarrow PT

• Peter and Pietrek [1998] \Rightarrow \Rightarrow \Rightarrow PT

Limitations of previous work

• Bad approximation of $L_{in}(\omega)$ in complex scenes

Limitations of previous work

Limitations of previous work

Limitations of previous work **PT**

Limitations of previous work **Not enough memory!**

Solution: On-line Learning of Parametric Model

- Shoot a batch of photons, then summarize into a parametric model
	- GMM (Gaussian Mixture Model) is used
	- **- Parametric model use less memory**
- Forget previous photon batch and shoot new batch
- Keep updating parameters of the model: **On-line learning**

Overcoming the memory constraint 1st pass

Overcoming the memory constraint 1st pass

Overcoming the memory constraint 1st pass $\sqrt{2}$ \rightarrow 2nd pass

Gaussian Mixture Model

Gaussian Distribution (Normal Distribution)

Gaussian Mixture Model (GMM)

Convex combination of Gaussians:

$$
GMM(\mathbf{s}|\theta) = \sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{s}|\mu_j, \Sigma_j)
$$

$$
\sum_{k=1}^{K} \pi_k = 1
$$

Used to approximate PDF

Expectation Maximization (EM) Algorithm

- Popular algorithm that can be used for fitting GMM to scattered data points
- Consists of 2 steps: E-step (expectation) and M-step (maximization)
- Converge to local maximum of likelihood

EM: How It Works

EM: Expectation Step

- For each sample, compute soft assignment weight to clusters

$$
\gamma_{qj} = \frac{\pi_j \mathcal{N}(\mathbf{s}_q \,|\, \theta_j^{\text{old}})}{\sum_{h=1}^K \pi_h \mathcal{N}(\mathbf{s}_q \,|\, \theta_h^{\text{old}})}
$$

Soft assignment using Bayes' rule

EM: Maximization Step

- Update each cluster parameters (mean, variance, weight) to fit the data assigned to it

$$
\begin{aligned} \mathbf{u}_{N-1}^j = \frac{1}{N}\sum_{q=0}^{N-1} \gamma_{qj} \mathbf{u}(\mathbf{s}_q) \\ \theta^{\text{new}} = \overline{\theta}(\mathbf{u}_i^1, \dots, \mathbf{u}_i^K) \end{aligned}
$$

EM example

EM example

EM example

On-line learning: Weighted Stepwise EM

Original EM:

$$
\mathbf{u}_{N-1}^j = \frac{1}{N}\sum_{q=0}^{N-1} \gamma_{qj}\mathbf{u}(\mathbf{s}_q)
$$

- Fit to density of finite set of samples, compute sufficient statistics at once

Weighted stepwise EM: (variant used for this paper)

$$
\mathbf{u}_i^j = (1 - \eta_i)\mathbf{u}_{i-1}^j + \eta_i w_q \gamma_{qj} \mathbf{u}(\mathbf{s}_q)
$$

- Use one sample for each step and extend to **infinite stream of samples**
- Use **weighted samples** (can be viewed as repeated samples)

- 1. Preprocessing
- 2. Training
- 3. Rendering

$$
\mathit{L}_R = \int_{\Omega} \rho(\mathbf{x},\omega_o,\omega_i) \cdot \mathit{L}(\mathbf{x},\omega_i) \cdot \cos\theta \ d\omega_i
$$

- 1. **Preprocessing**
- 2. Training
- 3. Rendering

$$
L_{\rm R}=\int_{\Omega}\boxed{\rho(\mathbf{x},\omega_{\rm o},\omega_{\rm i})}\cdot L(\mathbf{x},\omega_{\rm i})\cdot\cos\theta\;\textrm{d}\omega_{\rm i}
$$

- 1. Preprocessing
- 2. Training
- 3. Rendering

$$
L_{\rm R} = \int_{\Omega} \left[\rho(\mathbf{x}, \omega_{\rm o}, \omega_{\rm i}) \right] \cdot \left[L(\mathbf{x}, \omega_{\rm i}) \cdot \cos \theta \right] d\omega_{\rm i}
$$

- 1. Preprocessing
- 2. Training
- 3. Rendering

$$
L_{\rm R} = \int_{\Omega} \rho(\mathbf{x}, \omega_{o}, \omega_{i}) \cdot L(\mathbf{x}, \omega_{i}) \cdot \cos \theta \, d\omega_{i}
$$

1. Preprocessing

- BRDF is approximated by GMM
- Cache GMM for each material, for each (viewing) direction

$$
p_{\rho}(\omega_{o}|\omega_{i}, \mathbf{x}) \propto \rho(\mathbf{x}, \omega_{i}, \omega_{o})
$$

BRDF:Given

2. Training

- Photon, importons guide each other in alternating fashion
- On-line learning with weighted step-wise EM
- Cache the learnt illumination GMMs

$$
p_{\rm L}(\omega_{\rm o}|\mathbf{x}) \propto L(\mathbf{x}, \omega_{\rm o})\cos\theta
$$

Illumination: not known in advance

Radiance (view-independent)

2. Training

3. Rendering

- For intersection point, query the cached BRDF, radiance GMM
- **- Product distribution is calculated on-the-fly**
- Sampling based on product distribution

$$
p \thicksim p_{\otimes} = p_{\mathsf{p}} \otimes p_{\mathsf{L}}
$$

How can we calculate efficiently?

Gaussian x Gaussian = Gaussian

- Extends to multi-dimensional Gaussian

$GMM \times GMM = GMM$

Product distribution: GMM of M*N components

- Parameters for product GMM can be computed directly from original parameters

Reduction of GMM components

- For the sake of efficiency, merge similar components

Results & Discussion

Evaluation: 1 hour rendering

JEWELRY

Result

Discussion

- No memory issue indeed
	- < 10MB for GMM cache in typical scene
- Fast convergence for complex glossy-glossy reflection scene
	- Where product sampling is important
- Not efficient for spatially varying BRDF
	- GMM is cached per material
	- Possible extension using SVBRDF parameters

Summary

- In order to perform importance sampling, we estimate illumination based on particles
- In complex scenes, we need more particles for better estimation
- **- On-line learning of GMM by weighted stepwise EM, enables to generate particles without causing memory issues.**
- BRDF is also approximated as GMM so that we can use the **product GMM as direct approximation for the integrand** of the rendering equation
- Fast convergence for complex, glossy scenes